How energy efficiency is improved

Efficient use in continuous control systems

Features

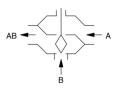
- · Continuous control of cold and hot water in closed circuits
- Water quality as per VDI 2035
- In combination with valve actuators AVM 105(S), AVM 115(S), AVM 321(S) and AVF 124 and AVF 125(S) as a control unit

12.1

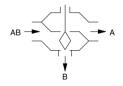
- · Not suitable for drinking water
- Valve with flange connection as per EN 1092-2, seal form B, for PN 16 and PN 10
- · Regulating valve, free of silicone grease, painted black
- · Characteristic can be set with SUT valve actuators to linear, equal-percentage or quadratic
- The control passage is closed when the spindle is moved out
- Used as control valve or as distribution valve
- Valve body with seat made of grey cast iron
- · Stainless-steel spindle
- · Plug made of brass with glass-fibre reinforced PTFE sealing ring
- · Stuffing box made of brass with wiper ring and double O-ring seal made of EPDM

Technical data

Parameters					
		Nominal pre	essure	PN 6	
		Connection		Flang	je as per EN 1092-2, form B
		Valve chara F200	cteristic, control passage	Linea	r
		Valve chara F300	cteristic, control passage	Equa	I-percentage
		Valve chara	cteristic, mixing passage	Linea	r
		Control ratio	o of valve	> 50:	1
		Stuffing box		2 EPI	DM O-rings
		Leakage rat	e, control passage	< 0.0	5% of K _{vs} value
		Leakage rat	e, mixing passage	< 1%	of K _{vs} value
		Valve stroke)	8 mm	1
Ambient conditior	ac ¹⁾				
	13	Operating te	emperature ²⁾	-10	150 °C
		Operating p	•	-	120 °C; 6 bar
		operating p		•	0 °C; 5.4 bar
					een 120 °C and 150 °C, a linear
					olation can be performed
Standards and di	rectives				
		Pressure an	id temperature data	EN 76	64, EN 1333
		Flow param	eters	EN 60	0534 (page 3)
		PED 2014/6	8/EU		group II, liquid or steam pres- no CE label as per article 4.3
Overview of typ	bes				
Туре	Nominal diameter		K _{vs} value		Weight
BUD015F320	DN 15		1.6 m³/h		3.2 kg
BUD015F310	DN 15		2.5 m³/h		3.2 kg
BUD015F300	DN 15		4 m³/h		3.2 kg
BUD020F300	DN 20		6.3 m³/h		4.1 kg
BUD025F300	DN 25		10 m³/h		4.7 kg
BUD032F300	DN 32		16 m³/h		7.1 kg
BUD040F300	DN 40		22 m³/h		8.4 kg


¹⁾ Humidity must not exceed 75%

 $^{2)}~$ At temperatures below 0 °C, use a stuffing box heater. Use adapter (accessory) at temperatures above 100 °C $\,$



BUD032F300

Control valve

Distribution valve

Б	6		1	1	1
J	6	•	н	н	I.

Туре	Nominal diameter	K _{vs} value	Weight	
BUD050F300	DN 50	28 m³/h	10.9 kg	
BUD050F200	DN 50	40 m³/h	11.2 kg	
Accessories				
Туре	Description			
0372240001	Manual adjustment for valves w	vith 8 mm stroke		
0372249001	Adapter required when tempera tures <10 °C)	ature of the medium is 100130	°C (recommended for tempera-	
0372249002	Adapter required when temperature of the medium is 130150 °C			
0378284100	Stuffing box heater 230V~, 15	W for medium below 0 °C		
0378284102	Stuffing box heater 24V~, 15 W	/ for medium below 0 °C		
0378368001	Complete replacement stuffing	box for DN 1550		

Combination of BUD with electric actuators

- *i* Warranty: The technical data and pressure differences indicated here are applicable only in combination with SAUTER valve actuators. The warranty does not apply if used with valve actuators from other manufacturers.
- *i* **Definition of** △**p** *s*: Maximum admissible pressure drop in the event of a malfunction (pipe break after the valve) at which the actuator reliably closes the valve by means of a return spring.
- *i* Definition of △p _{max}: Maximum admissible pressure drop in control mode at which the actuator reliably opens and closes the valve.

Combination of BUD with electric actuator, actuating power 250 N, 500 N

Actuator	AVM105F100	AVM105F120 AVM105F122	AVM105SF132	AVM115F120 AVM115F122	AVM115SF132
Actuating power	250 N	250 N	250 N	500 N	500 N
Control signal	2-/3-point	2-/3-point	2-/3-point, 010 V	2-/3-point	2-/3-point, 010 V
Running time	30 s	120 s	35/60/120 s	120 s	60/120 s

As control valve	$\Delta \mathbf{p}_{max}$	∆p _{max}	Δp_{max}	∆p _{max}	∆p _{max}
BUD015F320 BUD015F310 BUD015F300 BUD020F300	4.0	4.0	4.0	6.0	6.0
BUD025F300	2.8	2.8	2.8	6.0	6.0
BUD032F300	2.1	2.1	2.1	5.2	5.2
BUD040F300	1.2	1.2	1.2	3.3	3.3
BUD050F300 BUD050F200	0.9	0.9	0.9	2.0	2.0
Cannot be used as	distribution valve				

∆p [bar]

Combination of BUD with electric actuator with spring return, actuating power 500 N

Actuator	AVF124F130 AVF124F230	AVF125SF132 AVF125SF232
Actuating power	500 N	500 N
Control signal	3-point	2-/3-pt., 010 V, 420 mA
Running time	60/120 s	60/120 s

		∆ p [bar]	
As control valve	Δp_{max}	$\Delta \mathbf{p_s}$	Δp_{max}	$\Delta \mathbf{p_s}$
BUD015F320				
BUD015F310				
BUD015F300	6.0	6.0	6.0	6.0
BUD020F300				
BUD025F300				
BUD032F300	5.2	5.2	5.2	5.2

Product data sheet

5	6	1	1	1
J	6.	1	1	4

Actuator	AVF124F130 AVF124F230		AVF125SF132 AVF125SF232	
BUD040F300	3.3	3.3	3.3	3.3
BUD050F300 BUD050F200	2.0	2.0	2.0	2.0
As distribution valve	∆p _{max}	$\Delta \mathbf{p_S}$	∆p _{max}	$\Delta \mathbf{p_s}$
BUD015F320 BUD015F310 BUD015F300 BUD020F300	6.0	6.0	6.0	6.0
BUD025F300	5.0	6.0	5.0	6.0
BUD032F300	4.0	6.0	4.0	6.0
BUD040F300	2.5	6.0	2.5	6.0
BUD050F300 BUD050F200	1.5	6.0	1.5	6.0

✓ At temperatures above 100 °C, accessories are required

Combination of BUD with electric actuator, actuating power 1000 N

Actuator	AVM321F110 AVM321F112	AVM321SF132
Actuating power	1000 N	1000 N
Control signal	2-/3-point	2-/3-pt., 010 V, 420 mA
Running time	48/96 s	32/96 s

As control valve	∆p _{max}	∆Pmax
BUD015F320 BUD015F310 BUD015F300 BUD020F300 BUD025F300 BUD032F300 BUD040F300	6.0	6.0
BUD050F300 BUD050F200	4.0	4.0
As distribution valve	∆p _{max}	$\Delta \mathbf{p_{max}}$
	∆ p_{max} 6.0	∆ p_{max} 6.0
valve BUD015F320 BUD015F310 BUD015F300		
valve BUD015F320 BUD015F310 BUD015F300 BUD020F300	6.0	6.0
valve BUD015F320 BUD015F310 BUD015F300 BUD020F300 BUD025F300	6.0	6.0 5.0

₩ At temperatures above 100 °C, accessories are required

Description of operation

This valve may only be used for the continuous control of hot and cold water in closed circuits. The valve can be moved to any intermediate position with an electric actuator. When the spindle is moved out, the control passage of the valve is closed. These valves may be used as control valves or distribution valves. When fitting as a control valve, note that the flow direction marked on the valve is to be considered. When used as a distribution valve, the valve is fitted in the opposite direction to the flow direction marking. The use as a control valve is preferable. The flow parameters correspond to EN 60534.

These control valves are characterised by their reliability and precision and make an important contribution towards environmentally friendly regulation. They meet difficult challenges such as the quickclosing function, overcoming differential pressures, controlling media temperatures and performing the shut-off function, all with a low noise level.

The valve spindle is automatically and firmly connected to the actuator spindle. The brass plug controls the equal-percentage flow rate in the control passage. To compensate for the complementary characteristic of the consumer and ensure a constant quantity of medium regardless of the valve position, the mixing passage acts with a linear characteristic. The tightness of the valve is ensured by the seat incorporated in the body.

The stuffing box is maintenance-free. This consists of a brass body, 2 O-rings, a wiper ring and a grease reserve. This is free of silicone grease, and silicone oil may not be used for the spindle.

Intended use

This product is only suitable for the purpose intended by the manufacturer, as described in the "Description of operation" section.

All related product regulations must also be adhered to. Changing or converting the product is not admissible.

Engineering and fitting notes

The valves are combined with the valve actuators without a spring return or with valve actuators with a spring return. The actuator is mounted directly on the valve and fastened with either a nut or screws. The actuator is connected with the valve spindle automatically. During the commissioning of the system, the actuator moves out. The connector automatically closes when it reaches the lower valve seat. The stroke of the valve is also detected by the actuator. No other adjustments are required. Therefore the force on the seat is always the same and the smallest amount of leakage is ensured. With the SUT actuators, the characteristic can be set to linear or quadratic as required. The combination of AVM 105S and DN 50 F200 cannot be set to equal-percentage.

Additional technical data

SAUTER slide rule for valve sizing	P100013496
Manual on slide rule	7 000129 001
Parameters, fitting notes, control, general informat	ion Applicable EN, DIN, AD, TRD and accident prevention regu- lations
Fitting instructions:	
DN 1550	MV 506008
AVM 105,115,105S,115S	MV 506065
AVM 125S	MV 506066
AVF 124,124S	MV 505851
AVF 125S	MV 506067
AVM 321S	P 100011900
Declaration on materials and the environment	MD 56.111

Fitting position

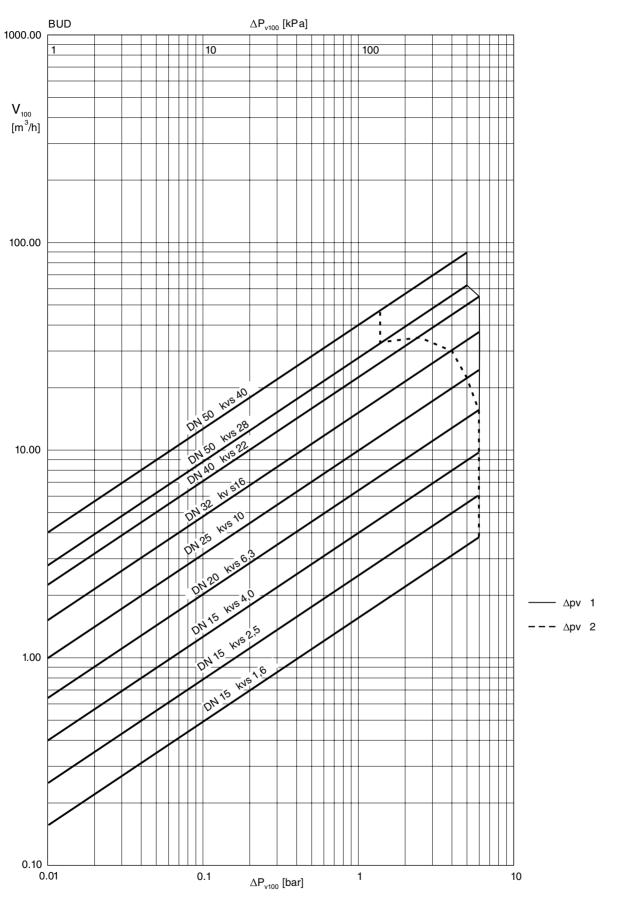
The control unit can be fitted in any position, but the hanging position is not recommended. Condensate, drops of water, etc. must be prevented from entering the actuator.

When the actuator is mounted on the valve, make sure the plug is not twisted on the seat (this can damage the sealing surface). When insulating the valve, it may only be insulated up to the connecting clip of the actuator.

Using with water

So that impurities are retained in the water (welding beads, rust particles, etc.) and the spindle seal is not damaged, we recommend installing collecting filters, for example one for each floor or pipe run. Water requirements according to VDI 2035. When using an additive in the water, the compatibility of

the materials must be checked with the manufacturer of the medium. The materials table shown below may be used. When glycol is used, we recommend using a concentration of between 20% and 55%.


12.1

Other information regarding hydraulics and noise in systems

The valves can be used in a low-noise environment. To prevent noise, the pressure differences Δp_{max} listed below should not be exceeded. To prevent noise, the pressure differences Δp_{max} listed below should not be exceeded. These are listed as recommended values in the table of pressure losses. The pressure difference Δp_v is the maximum pressure that may act on the valve regardless of the stroke position, in order that the risk of cavitation and erosion is limited. These values are irrespective of the actuator force. Cavitation accelerates wear and causes noises. To prevent cavitation, the pressure differential on the valve should not exceed the value Δp_{crit} :

- ∆p_{crit} = (p1 pv) × 0.5
- p1 = upstream pressure before the valve (bar)
- p_v = steam pressure at operating temperature (bar)
- The calculation works with absolute pressure.

For the spring return, the stated Δp_s values are also the permissible differential pressure up to which the actuator can guarantee that the valve is closed in the event of an incident. Because this is a quick-closing function with a "fast" stroke movement (using a spring), this value can exceed Δp_{max} .

Flow-rate chart

1: Control valve

2: Distribution valve

Product data sheet

Туре	Δ p v		
	Used as a control valve	Used as a distribution valve	
BUD015F***	6	6	
BUD020F300	6	6	
BUD025F300	6	5	
BUD032F300	6	4	
BUD 040 F300	6	2.5	
BUD050F***	5	1.5	

Additional version information

Valve body made of grey cast iron as per EN 1561, code EN-GJL-250, material number EN-JL 1040 with smooth drilled flanges as per EN 1092-2, seal form B. Valve body protected by matt paint RAL 9005 jet black. Recommended for the welding flange as per EN 1092-1. Valve fitting length as per EN 558-1, basic series 1. Flat seal on valve body made of asbestos-free material.

Material numbers as per DIN

	DIN material no.	DIN designation	
Valve body	EN-JL 1040	EN-GJL-250 (GG25)	
Valve seat	EN-JL 1040	EN-GJL-250	
Spindle	1.4305	X8CrNiS18-9	
Plug	CW617W	CuZn40Pb2	
Plug seal	PTFE		
Stuffing box	CW617W	CuZn40Pb2	

Additional details on the definitions of pressure difference

$\Delta \mathbf{p_v}$:

Maximum admissible pressure difference over the valve at every stroke position, limited by noise level and erosion.

With this parameter, the valve is characterised as a flow element with specific hydraulic behaviour. Monitoring the cavitation and erosion along with the associated noise increases the service life and the operational capacity.

$\Delta \mathbf{p}_{max}$:

Maximum admissible pressure difference over the valve at which the actuator can reliably open and close the valve.

Static pressure and flow effects are considered. This value ensures trouble-free stroke movement and tightness. The value Δp_v of the valve is never exceeded.

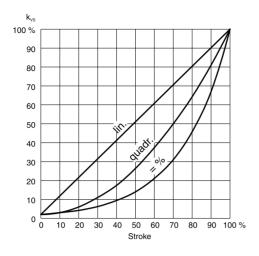
$\Delta \mathbf{p_s}$:

Maximum admissible pressure difference over the valve in the event of a malfunction (e.g. power failure, excessive temperature or pressure, pipe break) at which the actuator can close the valve tightly and, if necessary, maintain the entire operating pressure against atmospheric pressure. Because this is a quick-closing function with a rapid stroke movement, Δp_s can be greater than Δp_{max} or Δp_v . The disruptive flow effects that arise here are quickly passed through and are of minor importance in this method of operation.

For 3-way valves, the values only apply to the control passage.

$\Delta \mathbf{p}_{stat}$:

Line pressure behind the valve. This essentially corresponds to the idle pressure when the pump is switched off, caused for example by the fluid level in the system, increased pressure due to pressure tanks, steam pressure, etc.


For valves that close with pressure, the static pressure plus the pump pressure are used.

Disposal

When disposing of the product, observe the currently applicable local laws. More information on materials can be found in the Declaration on materials and the environment for this product.

Characteristic for actuators with positioner

On actuator AVM 105S, AVM 115S or AVM 321S Equal-percentage/linear Can be set using coding switch

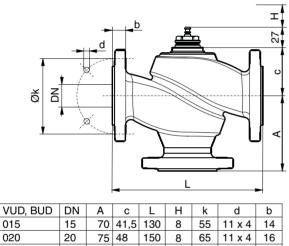
Dimension drawing

[mm]

025

032

040


050

25

32

40

50

80 54,5 160

95 60,5 180

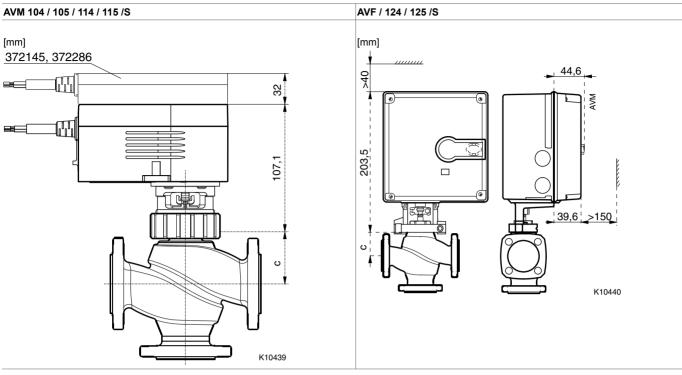
230

100 70,5 200

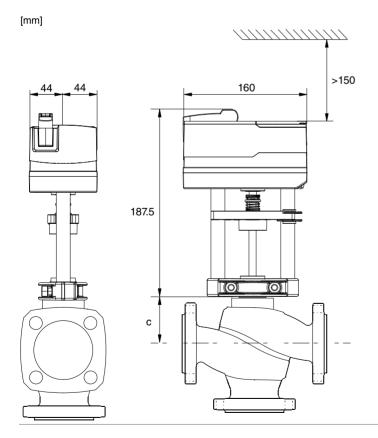
115 71

8

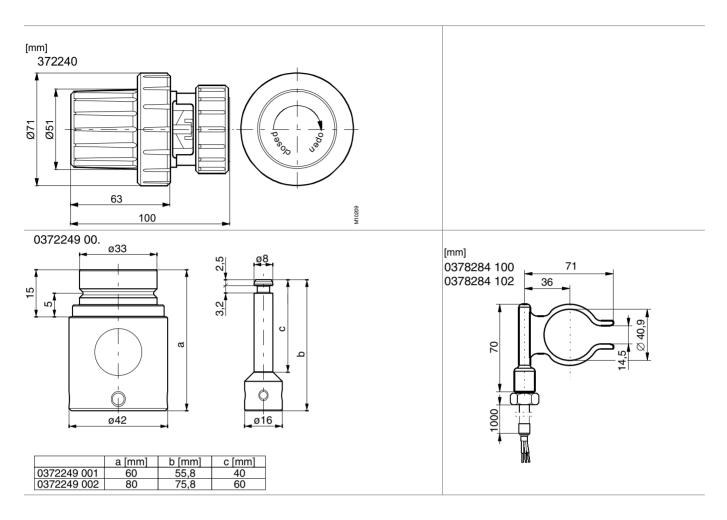
8


75 11 x 4 16

90 14 x 4 18
 8
 100
 14 x 4
 18


 8
 110
 14 x 4
 20

Product data sheet


Combinations

AVM 321/S

Accessories

